Tumblr Mouse Cursors
best-likes:

Hilarious! Embarrassing and Awkward Holiday Photos
The holidays are upon us and everyone is clicking those family photos that they can share on Facebook or on their holiday cards. However, we definitely don’t recommend sharing holiday photos like these.

best-likes:

Hilarious! Embarrassing and Awkward Holiday Photos

The holidays are upon us and everyone is clicking those family photos that they can share on Facebook or on their holiday cards. However, we definitely don’t recommend sharing holiday photos like these.

(via wrkhrsmusic)

gettingahealthybody:

Lemon, Honey & Thyme sorbet
Just four natural and (cheap) ingredients to make yourself a refreshing dessert.
Click here for recipe 

gettingahealthybody:

Lemon, Honey & Thyme sorbet

Just four natural and (cheap) ingredients to make yourself a refreshing dessert.

Click here for recipe 

(via gettingahealthybody)

tonefastfitness:

Why do you workout?
Like us on Facebook!!!

tonefastfitness:

Why do you workout?

Like us on Facebook!!!

(via how-to-be-a-healthier-me)

(via how-to-be-a-healthier-me)

neurosciencestuff:

Gene expression changes with meditation
With evidence growing that meditation can have beneficial health effects, scientists have sought to understand how these practices physically affect the body.
A new study by researchers in Wisconsin, Spain, and France reports the first evidence of specific molecular changes in the body following a period of mindfulness meditation.
The study investigated the effects of a day of intensive mindfulness practice in a group of experienced meditators, compared to a group of untrained control subjects who engaged in quiet non-meditative activities. After eight hours of mindfulness practice, the meditators showed a range of genetic and molecular differences, including altered levels of gene-regulating machinery and reduced levels of pro-inflammatory genes, which in turn correlated with faster physical recovery from a stressful situation.
"To the best of our knowledge, this is the first paper that shows rapid alterations in gene expression within subjects associated with mindfulness meditation practice," says study author Richard J. Davidson, founder of the Center for Investigating Healthy Minds and the William James and Vilas Professor of Psychology and Psychiatry at the University of Wisconsin-Madison.
"Most interestingly, the changes were observed in genes that are the current targets of anti-inflammatory and analgesic drugs," says Perla Kaliman, first author of the article and a researcher at the Institute of Biomedical Research of Barcelona, Spain (IIBB-CSIC-IDIBAPS), where the molecular analyses were conducted.
The study was published in the journal Psychoneuroendocrinology.
Mindfulness-based trainings have shown beneficial effects on inflammatory disorders in prior clinical studies and are endorsed by the American Heart Association as a preventative intervention. The new results provide a possible biological mechanism for therapeutic effects.
The results show a down-regulation of genes that have been implicated in inflammation. The affected genes include the pro-inflammatory genes RIPK2 and COX2 as well as several histone deacetylase (HDAC) genes, which regulate the activity of other genes epigenetically by removing a type of chemical tag. What’s more, the extent to which some of those genes were downregulated was associated with faster cortisol recovery to a social stress test involving an impromptu speech and tasks requiring mental calculations performed in front of an audience and video camera.
Perhaps surprisingly, the researchers say, there was no difference in the tested genes between the two groups of people at the start of the study. The observed effects were seen only in the meditators following mindfulness practice. In addition, several other DNA-modifying genes showed no differences between groups, suggesting that the mindfulness practice specifically affected certain regulatory pathways.
However, it is important to note that the study was not designed to distinguish any effects of long-term meditation training from those of a single day of practice. Instead, the key result is that meditators experienced genetic changes following mindfulness practice that were not seen in the non-meditating group after other quiet activities — an outcome providing proof of principle that mindfulness practice can lead to epigenetic alterations of the genome.
Previous studies in rodents and in people have shown dynamic epigenetic responses to physical stimuli such as stress, diet, or exercise within just a few hours.
"Our genes are quite dynamic in their expression and these results suggest that the calmness of our mind can actually have a potential influence on their expression," Davidson says.
"The regulation of HDACs and inflammatory pathways may represent some of the mechanisms underlying the therapeutic potential of mindfulness-based interventions," Kaliman says. "Our findings set the foundation for future studies to further assess meditation strategies for the treatment of chronic inflammatory conditions."

neurosciencestuff:

Gene expression changes with meditation

With evidence growing that meditation can have beneficial health effects, scientists have sought to understand how these practices physically affect the body.

A new study by researchers in Wisconsin, Spain, and France reports the first evidence of specific molecular changes in the body following a period of mindfulness meditation.

The study investigated the effects of a day of intensive mindfulness practice in a group of experienced meditators, compared to a group of untrained control subjects who engaged in quiet non-meditative activities. After eight hours of mindfulness practice, the meditators showed a range of genetic and molecular differences, including altered levels of gene-regulating machinery and reduced levels of pro-inflammatory genes, which in turn correlated with faster physical recovery from a stressful situation.

"To the best of our knowledge, this is the first paper that shows rapid alterations in gene expression within subjects associated with mindfulness meditation practice," says study author Richard J. Davidson, founder of the Center for Investigating Healthy Minds and the William James and Vilas Professor of Psychology and Psychiatry at the University of Wisconsin-Madison.

"Most interestingly, the changes were observed in genes that are the current targets of anti-inflammatory and analgesic drugs," says Perla Kaliman, first author of the article and a researcher at the Institute of Biomedical Research of Barcelona, Spain (IIBB-CSIC-IDIBAPS), where the molecular analyses were conducted.

The study was published in the journal Psychoneuroendocrinology.

Mindfulness-based trainings have shown beneficial effects on inflammatory disorders in prior clinical studies and are endorsed by the American Heart Association as a preventative intervention. The new results provide a possible biological mechanism for therapeutic effects.

The results show a down-regulation of genes that have been implicated in inflammation. The affected genes include the pro-inflammatory genes RIPK2 and COX2 as well as several histone deacetylase (HDAC) genes, which regulate the activity of other genes epigenetically by removing a type of chemical tag. What’s more, the extent to which some of those genes were downregulated was associated with faster cortisol recovery to a social stress test involving an impromptu speech and tasks requiring mental calculations performed in front of an audience and video camera.

Perhaps surprisingly, the researchers say, there was no difference in the tested genes between the two groups of people at the start of the study. The observed effects were seen only in the meditators following mindfulness practice. In addition, several other DNA-modifying genes showed no differences between groups, suggesting that the mindfulness practice specifically affected certain regulatory pathways.

However, it is important to note that the study was not designed to distinguish any effects of long-term meditation training from those of a single day of practice. Instead, the key result is that meditators experienced genetic changes following mindfulness practice that were not seen in the non-meditating group after other quiet activities — an outcome providing proof of principle that mindfulness practice can lead to epigenetic alterations of the genome.

Previous studies in rodents and in people have shown dynamic epigenetic responses to physical stimuli such as stress, diet, or exercise within just a few hours.

"Our genes are quite dynamic in their expression and these results suggest that the calmness of our mind can actually have a potential influence on their expression," Davidson says.

"The regulation of HDACs and inflammatory pathways may represent some of the mechanisms underlying the therapeutic potential of mindfulness-based interventions," Kaliman says. "Our findings set the foundation for future studies to further assess meditation strategies for the treatment of chronic inflammatory conditions."

(Source: fit-vation, via tumblrgym)

neurosciencestuff:

Playing computer games makes brains feel and think alike
Scientists have discovered that playing computer games can bring players’ emotional responses and brain activity into unison.
By measuring the activity of facial muscles and imaging the brain while gaming, the group found out that people go through similar emotions and display matching brainwaves. The study of Helsinki Institute for Information Technology HIIT researchers is now published in PLOS ONE.
– It’s well known that people who communicate face-to-face will start to imitate each other. People adopt each other’s poses and gestures, much like infectious yawning. What is less known is that the very physiology of interacting people shows a type of mimicry – which we call synchrony or linkage, explains Michiel Sovijärvi-Spapé.
In the study, test participants play a computer game called Hedgewars, in which they manage their own team of animated hedgehogs and in turns shoot the opposing team with ballistic artillery. The goal is to destroy the opposing team’s hedgehogs. The research team varied the amount of competitiveness in the gaming situation: players teamed up against the computer and they were also pinned directly against each other.
The players were measured for facial muscle reactions with facial electromyography, or fEMG, and their brainwaves were measured with electroencephalography, EEG.
– Replicating previous studies, we found linkage in the fEMG: two players showed both similar emotions and similar brainwaves at similar times. We further observed a linkage also in the brainwaves with EEG, tells Sovijärvi-Spapé.
A striking discovery indicates further that the more competitive the gaming gets, the more in sync are the emotional responses of the players. The test subjects were to report emotions themselves, and negative emotions were associated with the linkage effect.
– Although counterintuitive, the discovered effect increases as a game becomes more competitive. And the more competitive it gets, the more the players’ positive emotions begin to reflect each other. All the while their experiences of negative emotions increase.
The results present promising upshots for further study.
– Feeling others’ emotions could be particularly beneficial in competitive settings: the linkage may enable one to better anticipate the actions of opponents.
Another interpretation suggested by the group is that the physical linkage of emotion may work to compensate a possibly faltering social bond while competing in a gaming setting.
– Since our participants were all friends before the game, we can speculate that the linkage is most prominent when a friendship is ‘threatened’ while competing against each other, ponders Sovijärvi-Spapé.

neurosciencestuff:

Playing computer games makes brains feel and think alike

Scientists have discovered that playing computer games can bring players’ emotional responses and brain activity into unison.

By measuring the activity of facial muscles and imaging the brain while gaming, the group found out that people go through similar emotions and display matching brainwaves. The study of Helsinki Institute for Information Technology HIIT researchers is now published in PLOS ONE.

– It’s well known that people who communicate face-to-face will start to imitate each other. People adopt each other’s poses and gestures, much like infectious yawning. What is less known is that the very physiology of interacting people shows a type of mimicry – which we call synchrony or linkage, explains Michiel Sovijärvi-Spapé.

In the study, test participants play a computer game called Hedgewars, in which they manage their own team of animated hedgehogs and in turns shoot the opposing team with ballistic artillery. The goal is to destroy the opposing team’s hedgehogs. The research team varied the amount of competitiveness in the gaming situation: players teamed up against the computer and they were also pinned directly against each other.

The players were measured for facial muscle reactions with facial electromyography, or fEMG, and their brainwaves were measured with electroencephalography, EEG.

– Replicating previous studies, we found linkage in the fEMG: two players showed both similar emotions and similar brainwaves at similar times. We further observed a linkage also in the brainwaves with EEG, tells Sovijärvi-Spapé.

A striking discovery indicates further that the more competitive the gaming gets, the more in sync are the emotional responses of the players. The test subjects were to report emotions themselves, and negative emotions were associated with the linkage effect.

– Although counterintuitive, the discovered effect increases as a game becomes more competitive. And the more competitive it gets, the more the players’ positive emotions begin to reflect each other. All the while their experiences of negative emotions increase.

The results present promising upshots for further study.

– Feeling others’ emotions could be particularly beneficial in competitive settings: the linkage may enable one to better anticipate the actions of opponents.

Another interpretation suggested by the group is that the physical linkage of emotion may work to compensate a possibly faltering social bond while competing in a gaming setting.

– Since our participants were all friends before the game, we can speculate that the linkage is most prominent when a friendship is ‘threatened’ while competing against each other, ponders Sovijärvi-Spapé.

best-likes:

Embarrassing Facebook Photos?
Friends don’t let friends post these embarrassing photos on Facebook: http://bit.ly/1js547c

best-likes:

Embarrassing Facebook Photos?

Friends don’t let friends post these embarrassing photos on Facebook: http://bit.ly/1js547c

(Source: bestlikes.dailypix.me, via wrkhrsmusic)

(Source: cdryan.com, via highcountryhappy)

best-likes:

The Most Dangerous Places On Earth
The Most Dangerous Places On Earth: Would you visit? http://bit.ly/18d7QOm

best-likes:

The Most Dangerous Places On Earth

The Most Dangerous Places On Earth: Would you visit? http://bit.ly/18d7QOm

(Source: bestlikes.dailypix.me, via wrkhrsmusic)